April 19, 2001
Vieux défi (Joe Shipman). Larry King a déclaré dans sa chronique USA Today qu’il y a 293 façons de faire de la monnaie pour un dollar. Est-ce exact ? (Supposez seulement les dénominations actuellement frappées.)
Réponse. Oui, si vous comptez une pièce d’un dollar dans la monnaie. Raymond Hettinger a énuméré les 293 possibilités, annexées en fin de colonne. Michael Caulfield a compté les 292 possibilités autres qu’une pièce d’un dollar comme suit :
Sachant qu’un demi-dollar sera utilisé, il y a 50 combinaisons :
un autre demi-dollar (1 façon)
2 quarts (1 façon)
1 quart avec : 2 dimes (2 façons), 1 dime (4), ou 0 dimes (6).
0 quarters avec : 5 dimes (1), 4 (3), 3 (5), 2 (7), 1 (9), ou 0 (11).
Du fait qu’aucun demi-dollar ne sera utilisé, il existe 242 combinaisons :
4 quarters (1 façon)
3 quarters avec : 2 pièces de 10 cents (2 façons), 1 (4), ou 0 (6).
2 pièces de 25 cents avec : 5 pièces de 10 cents (1), 4 (3), 3 (5), 2 (7), 1 (9), ou 0 (11).
1 pièce de 25 cents avec : 7 pièces de 10 cents (2), 6 (4), 5 (6), 4 (8), 3 (10), 2 (12), 1 (14), 0 (16)
0 quarts avec : 10 pièces de 10 cents (1), 9 (3), 8 (5), 7 (7), 6 (9), 5 (11), 4 (13), 3 (15), 2 (17), 1 (19), 0 (21).
Torsten Sillke a discuté de la façon dont de tels calculs peuvent être accomplis avec des fonctions génératrices. Voir « Lectures on Integer Partitions » de Herbert’s Wilf (page 10) à http://www.math.upenn.edu/~wilf La réponse à notre problème (293) est le coefficient de x^100 dans l’inverse de ce qui suit :
Al Zimmermann a fourni le tableau suivant des nombres de façons dont vous pouvez échanger diverses unités de monnaie contre des unités de monnaie plus petites :
Unité de monnaie | Nombre de façons de rendre la monnaie |
1¢ | 0 |
5¢ | 1 |
10¢ | 3 |
25¢ | 12 |
50¢ | 49 |
$1 | 292 |
$2 | 2,728 |
$5 | 111,022 |
$10 | 3,237,134 |
$20 | 155,848,897 |
50 | 58,853,234,018 |
100 | 9,823,546,661,905 |
Zimmermann a ajouté : J’ai autorisé les billets de 2 $. Je n’ai pas fait de distinction entre les pièces de 1 $ et les billets de 1 $ dans la monnaie. J’ai réfléchi à cette question et j’ai décidé que si je faisais une distinction, alors je devais aussi faire une distinction entre les 50 différentes pièces de 1 $ qui sont maintenant émises. Et je ne voulais vraiment pas faire cela.
Suivant Caulfield et Zimmermann et contestant Larry King, Walter Wright affirme qu’une pièce de 1 dollar ne peut être considérée comme de la monnaie pour un billet de 1 dollar : Le Webster’s New World Dictionary définit la monnaie comme « un nombre de pièces ou de billets dont la valeur totale est égale à une seule pièce ou un seul billet plus important. »
Mathématiques douteuses. Al Zimmermann rapporte que : « Il y a environ trois ans, je me suis rendu à un distributeur automatique de Citibank dans le centre de Manhattan pour retirer de l’argent. La machine a rejeté ma demande avec le message suivant :
Je ne peux pas vous donner 130 dollars parce que je n’ai que des billets de 50 et 20 dollars. Veuillez choisir un autre montant. »
Bien sûr, 130 $ = 50 $ + 4 x 20 $.
Les lecteurs sont invités à soumettre d’autres exemples de mathématiques douteuses.
Nouveau défi. Quel est le plus grand nombre positif que vous pouvez représenter avec trois symboles mathématiques standards distincts, tels que 8×9 ? Le plus petit?
Envoyez les réponses, les commentaires et les nouvelles questions par courriel à [email protected], pour être éligible à Flatland et à d’autres prix littéraires. Les réponses gagnantes apparaîtront dans le prochain Math Chat. Le Math Chat paraît les premier et troisième jeudis de chaque mois. La page d’accueil du professeur Morgan se trouve à l’adresse suivante : www.williams.edu/Mathematics/fmorgan.
LE LIVRE DU MATH CHAT, comprenant un QUEST du livre du Math Chat à 1000 $, des questions et des réponses, ainsi qu’une liste des anciens gagnants du défi, est maintenant disponible auprès du MAA (800-331-1622).
La liste de Raymond Hettinger des 293 façons de faire de la monnaie pour un dollar :
1 : 0 0 0 0 0 100 (0 dollars, 0 demi-dollars, 0 quarts, 0 dixièmes, 0
nickels, 100 pennies)
2 : 0 0 0 0 1 95
3 : 0 0 0 0 2 90
4 : 0 0 0 0 3 85
5 : 0 0 0 0 4 80
6 : 0 0 0 0 5 75
7 : 0 0 0 0 6 70
8 : 0 0 0 0 7 65
9 : 0 0 0 0 8 60
10 : 0 0 0 0 9 55
11 : 0 0 0 0 10 50
12 : 0 0 0 0 11 45
13 : 0 0 0 0 12 40
14 : 0 0 0 0 13 35
15 : 0 0 0 0 14 30
16 : 0 0 0 0 15 25
17 : 0 0 0 0 16 20
18 : 0 0 0 0 17 15
19 : 0 0 0 0 18 10
20 : 0 0 0 0 19 5
21 : 0 0 0 0 20 0
22 : 0 0 0 1 0 90
23 : 0 0 0 1 1 85
24 : 0 0 0 1 2 80
25 : 0 0 0 1 3 75
26 : 0 0 0 1 4 70
27 : 0 0 0 1 5 65
28 : 0 0 0 1 6 60
29 : 0 0 0 1 7 55
30 : 0 0 0 1 8 50
31 : 0 0 0 1 9 45
32 : 0 0 0 1 10 40
33 : 0 0 0 1 11 35
34 : 0 0 0 1 12 30
35 : 0 0 0 1 13 25
36 : 0 0 0 1 14 20
37 : 0 0 0 1 15 15
38 : 0 0 0 1 16 10
39 : 0 0 0 1 17 5
40 : 0 0 0 1 18 0
41 : 0 0 0 2 0 80
42 : 0 0 0 2 1 75
43 : 0 0 0 2 2 70
44 : 0 0 0 2 3 65
45 : 0 0 0 2 4 60
46 : 0 0 0 2 5 55
47 : 0 0 0 2 6 50
48 : 0 0 0 2 7 45
49 : 0 0 0 2 8 40
50 : 0 0 0 2 9 35
51 : 0 0 0 2 10 30
52 : 0 0 0 2 11 25
53 : 0 0 0 2 12 20
54 : 0 0 0 2 13 15
55 : 0 0 0 2 14 10
56 : 0 0 0 2 15 5
57 : 0 0 0 2 16 0
58 : 0 0 0 3 0 70
59 : 0 0 0 3 1 65
60 : 0 0 0 3 2 60
61 : 0 0 0 3 3 55
62 : 0 0 0 3 4 50
63 : 0 0 0 3 5 45
64 : 0 0 0 3 6 40
65 : 0 0 0 3 7 35
66 : 0 0 0 3 8 30
67 : 0 0 0 3 9 25
68 : 0 0 0 3 10 20
69 : 0 0 0 3 11 15
70 : 0 0 0 3 12 10
71 : 0 0 0 3 13 5
72 : 0 0 0 3 14 0
73 : 0 0 0 4 0 60
74 : 0 0 0 4 1 55
75 : 0 0 0 4 2 50
76 : 0 0 0 4 3 45
77 : 0 0 0 4 4 40
78 : 0 0 0 4 5 35
79 : 0 0 0 4 6 30
80 : 0 0 0 4 7 25
81 : 0 0 0 4 8 20
82 : 0 0 0 4 9 15
83 : 0 0 0 4 10 10
84 : 0 0 0 4 11 5
85 : 0 0 0 4 12 0
86 : 0 0 0 5 0 50
87 : 0 0 0 5 1 45
88 : 0 0 0 5 2 40
89 : 0 0 0 5 3 35
90 : 0 0 0 5 4 30
91 : 0 0 0 5 5 25
92 : 0 0 0 5 6 20
93 : 0 0 0 5 7 15
94 : 0 0 0 5 8 10
95 : 0 0 0 5 9 5
96 : 0 0 0 5 10 0
97 : 0 0 0 6 0 40
98 : 0 0 0 6 1 35
99 : 0 0 0 6 2 30
100 : 0 0 0 6 3 25
101 : 0 0 0 6 4 20
102 : 0 0 0 6 5 15
103 : 0 0 0 6 6 10
104 : 0 0 0 6 7 5
105 : 0 0 0 6 8 0
106 : 0 0 0 7 0 30
107 : 0 0 0 7 1 25
108 : 0 0 0 7 2 20
109 : 0 0 0 7 3 15
110 : 0 0 0 7 4 10
111 : 0 0 0 7 5 5
112 : 0 0 0 7 6 0
113 : 0 0 0 8 0 20
114 : 0 0 0 8 1 15
115 : 0 0 0 8 2 10
116 : 0 0 0 8 3 5
117 : 0 0 0 8 4 0
118 : 0 0 0 9 0 10
119 : 0 0 0 9 1 5
120 : 0 0 0 9 2 0
121 : 0 0 0 10 0 0
122 : 0 0 1 0 0 75
123 : 0 0 1 0 1 70
124 : 0 0 1 0 2 65
125 : 0 0 1 0 3 60
126 : 0 0 1 0 4 55
127 : 0 0 1 0 5 50
128 : 0 0 1 0 6 45
129 : 0 0 1 0 7 40
130 : 0 0 1 0 8 35
131 : 0 0 1 0 9 30
132 : 0 0 1 0 10 25
133 : 0 0 1 0 11 20
134 : 0 0 1 0 12 15
135 : 0 0 1 0 13 10
136 : 0 0 1 0 14 5
137 : 0 0 1 0 15 0
138 : 0 0 1 1 0 65
139 : 0 0 1 1 1 60
140 : 0 0 1 1 2 55
141 : 0 0 1 1 3 50
142 : 0 0 1 1 4 45
143 : 0 0 1 1 5 40
144 : 0 0 1 1 6 35
145 : 0 0 1 1 7 30
146 : 0 0 1 1 8 25
147 : 0 0 1 1 9 20
148 : 0 0 1 1 10 15
149 : 0 0 1 1 11 10
150 : 0 0 1 1 12 5
151 : 0 0 1 1 13 0
152 : 0 0 1 2 0 55
153 : 0 0 1 2 1 50
154 : 0 0 1 2 2 45
155 : 0 0 1 2 3 40
156 : 0 0 1 2 4 35
157 : 0 0 1 2 5 30
158 : 0 0 1 2 6 25
159 : 0 0 1 2 7 20
160 : 0 0 1 2 8 15
161 : 0 0 1 2 9 10
162 : 0 0 1 2 10 5
163 : 0 0 1 2 11 0
164 : 0 0 1 3 0 45
165 : 0 0 1 3 1 40
166 : 0 0 1 3 2 35
167 : 0 0 1 3 3 30
168 : 0 0 1 3 4 25
169 : 0 0 1 3 5 20
170 : 0 0 1 3 6 15
171 : 0 0 1 3 7 10
172 : 0 0 1 3 8 5
173 : 0 0 1 3 9 0
174 : 0 0 1 4 0 35
175 : 0 0 1 4 1 30
176 : 0 0 1 4 2 25
177 : 0 0 1 4 3 20
178 : 0 0 1 4 4 15
179 : 0 0 1 4 5 10
180 : 0 0 1 4 6 5
181 : 0 0 1 4 7 0
182 : 0 0 1 5 0 25
183 : 0 0 1 5 1 20
184 : 0 0 1 5 2 15
185 : 0 0 1 5 3 10
186 : 0 0 1 5 4 5
187 : 0 0 1 5 5 0
188 : 0 0 1 6 0 15
189 : 0 0 1 6 1 10
190 : 0 0 1 6 2 5
191 : 0 0 1 6 3 0
192 : 0 0 1 7 0 5
193 : 0 0 1 7 1 0
194 : 0 0 2 0 0 50
195 : 0 0 2 0 1 45
196 : 0 0 2 0 2 40
197 : 0 0 2 0 3 35
198 : 0 0 2 0 4 30
199 : 0 0 2 0 5 25
200 : 0 0 2 0 6 20
201 : 0 0 2 0 7 15
202 : 0 0 2 0 8 10
203 : 0 0 2 0 9 5
204 : 0 0 2 0 10 0
205 : 0 0 2 1 0 40
206 : 0 0 2 1 1 35
207 : 0 0 2 1 2 30
208 : 0 0 2 1 3 25
209 : 0 0 2 1 4 20
210 : 0 0 2 1 5 15
211 : 0 0 2 1 6 10
212 : 0 0 2 1 7 5
213 : 0 0 2 1 8 0
214 : 0 0 2 2 0 30
215 : 0 0 2 2 1 25
216 : 0 0 2 2 2 20
217 : 0 0 2 2 3 15
218 : 0 0 2 2 4 10
219 : 0 0 2 2 5 5
220 : 0 0 2 2 6 0
221 : 0 0 2 3 0 20
222 : 0 0 2 3 1 15
223 : 0 0 2 3 2 10
224 : 0 0 2 3 3 5
225 : 0 0 2 3 4 0
226 : 0 0 2 4 0 10
227 : 0 0 2 4 1 5
228 : 0 0 2 4 2 0
229 : 0 0 2 5 0 0
230 : 0 0 3 0 0 25
231 : 0 0 3 0 1 20
232 : 0 0 3 0 2 15
233 : 0 0 3 0 3 10
234 : 0 0 3 0 4 5
235 : 0 0 3 0 5 0
236 : 0 0 3 1 0 15
237 : 0 0 3 1 1 10
238 : 0 0 3 1 2 5
239 : 0 0 3 1 3 0
240 : 0 0 3 2 0 5
241 : 0 0 3 2 1 0
242 : 0 0 4 0 0 0
243 : 0 1 0 0 0 50
244 : 0 1 0 0 1 45
245 : 0 1 0 0 2 40
246 : 0 1 0 0 3 35
247 : 0 1 0 0 4 30
248 : 0 1 0 0 5 25
249 : 0 1 0 0 6 20
250 : 0 1 0 0 7 15
251 : 0 1 0 0 8 10
252 : 0 1 0 0 9 5
253 : 0 1 0 0 10 0
254 : 0 1 0 1 0 40
255 : 0 1 0 1 1 35
256 : 0 1 0 1 2 30
257 : 0 1 0 1 3 25
258 : 0 1 0 1 4 20
259 : 0 1 0 1 5 15
260 : 0 1 0 1 6 10
261 : 0 1 0 1 7 5
262 : 0 1 0 1 8 0
263 : 0 1 0 2 0 30
264 : 0 1 0 2 1 25
265 : 0 1 0 2 2 20
266 : 0 1 0 2 3 15
267 : 0 1 0 2 4 10
268 : 0 1 0 2 5 5
269 : 0 1 0 2 6 0
270 : 0 1 0 3 0 20
271 : 0 1 0 3 1 15
272 : 0 1 0 3 2 10
273 : 0 1 0 3 3 5
274 : 0 1 0 3 4 0
275 : 0 1 0 4 0 10
276 : 0 1 0 4 1 5
277 : 0 1 0 4 2 0
278 : 0 1 0 5 0 0
279 : 0 1 1 0 0 25
280 : 0 1 1 0 1 20
281 : 0 1 1 0 2 15
282 : 0 1 1 0 3 10
283 : 0 1 1 0 4 5
284 : 0 1 1 0 5 0
285 : 0 1 1 1 0 15
286 : 0 1 1 1 1 10
287 : 0 1 1 1 2 5
288 : 0 1 1 1 3 0
289 : 0 1 1 2 0 5
290 : 0 1 1 2 1 0
291 : 0 1 2 0 0 0
292 : 0 2 0 0 0 0
293 : 1 0 0 0 0 0